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This work is devoted to the study of the nonperturbative contributions in nonleptonic hyperon
decays. We show that the instanton-induced ’t Hooft interaction can naturally explain the �I � 1=2
rule, by generating quark-diquark clustering inside octet baryons. We compute P-wave and S-wave
amplitudes in the instanton liquid model, and find good agreement with experiment. We propose a
model-independent procedure to test on the lattice if the leading quark-quark attraction in the 0�

antitriplet channel responsible for diquark structures in hadrons is originated by the interaction
generated by quasiclassical fields or if it is predominantly due to other perturbative and/or confining
forces.
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I. INTRODUCTION

Weak decays of hadrons encode important information
about the meson and baryon structure and about the QCD
interactions in the perturbative and nonperturbative re-
gimes. The natural scale of weak processes—set by W
boson mass—is much larger than all other scales in-
volved in the hadron internal dynamics. This implies
that weak interactions are effectively local and therefore
can resolve short-distance structures inside hadrons.
Moreover, their explicit dependence on quark flavor and
chirality can be exploited to probe the Dirac and flavor
structure of the nonperturbative QCD interaction.

Among the large variety of weak hadronic processes, a
prominent role is played by the nonleptonic decays of
kaons and hyperons, which are characterized by the
famous �I � 1=2 rule [1]. With this name, one refers to
the empirical observation that amplitudes in which the
total isospin is changed by 1=2 units are roughly 20 times
larger than the corresponding amplitudes in which the
isospin is changed by 3=2 units.

Despite nearly 40 years of efforts, the microscopic
dynamical mechanism responsible for such a striking
phenomenon is still elusive. Neither electroweak nor per-
turbative QCD interactions can account for the dramatic
relative enhancement of the �I � 1=2 decay channels. Its
origin must therefore reside in the nonperturbative sector
of QCD.

Important insight on the role of nonperturbative dy-
namics in nonleptonic hyperon decays has come from the
observation that in the pole model (see below) the sup-
pression of the decays in the �I � 3=2 channel can be
explained if the quarks participating to the weak decay
are in an antisymmetric color combination (Pati-Woo
theorem, [2]). Unfortunately, in a simple constituent
quark-model picture it is not easy to obtain satisfactory
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quantitative predictions for both the P-wave and the
S-wave amplitudes. One usually needs to make additional
model assumptions on the pole-model part of the ampli-
tude, and this somewhat spoils the simplicity of the
approach. For example, in order to reproduce the data
on S-wave amplitudes, one needs to include 1=2� inter-
mediate states [3].

From these considerations it follows that further inves-
tigations are still needed in order to understand the non-
perturbative QCD dynamics underlying nonleptonic
weak decays. In particular, it would be desirable to set
up a field-theoretic calculation which accounts explicitly
for the current quark and gluon degrees of freedom. In
this work, we explore the possibility that the phenome-
nology of hyperon decays can be understood in the in-
stanton liquid model (ILM). Such an approach is derived
directly from the QCD Lagrangian, by selecting a spe-
cific set of gauge configurations which are assumed to
dominate the path integral.

Instantons are topological gauge configurations which
dominate the QCD path integral in the semiclassical
limit. They generate an effective quark-quark interaction
(’t Hooft vertex) which breaks spontaneously chiral sym-
metry and solves the U(1) problem [4]. Evidence for
instanton-induced dynamics has been accumulated over
the years from a variety of phenomenological studies [5]
as well as from lattice simulations [6–9]. In general, these
nonperturbative vacuum fields play an important role in
the chiral dynamics of light quarks [10], but it is gener-
ally believed that they do not provide an areal law for the
Wilson loop.

The ILM assumes that the QCD vacuum is saturated by
an ensemble of instantons and anti-instantons. The two
phenomenological parameters of the model are the in-
stanton average size ( �� ’ 1=3 fm) and average density
( �n ’ 1 fm�4). These values were first extracted 20 years
16-1  2004 The American Physical Society
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ago from the global properties of the QCD vacuum (quark
and gluon condensates) [11].

In the ILM, quarks are bound by the ’t Hooft interac-
tion. Even in the absence of confinement, the structure of
the lowest-lying part of the light meson and baryon
spectra is very well reproduced [12–14]. In particular,
in this model the lightest octet of pseudoscalar and vector
mesons as well as the lightest octet and decuplet of
baryons have very realistic masses. Moreover, the short-
range forces generated by instantons allow one to repro-
duce the available experimental data on the pion and
nucleon form factors and more generally explain the
delay of the onset of the asymptotic perturbative regime,
in hard exclusive reactions [15,16].

Besides providing a successful overall description of
the light hadron phenomenology, instantons have a spe-
cific property which makes them natural candidates for
the solution of the �I � 1=2 problem. In fact, Stech,
Neubert, and Xu pointed out that the body of data on
nonleptonic kaon and hyperon decays can be simulta-
neously reproduced, if one assumes that the nonperturba-
tive quark-quark interaction in the color antitriplet
channel is sufficiently attractive to form colored quasi-
bound structures (diquarks) inside hadrons [17].
Instantons provide a microscopic mechanism which gen-
erates such a strong attraction binding scalar diquarks
[13] and leading to quark-diquark clustering inside the
octet baryons.

In the past there have been few attempts to understand
the �I � 1=2 rule with instantons [18,19]. In [18],
Kochelev and Vento (KV) computed the instanton con-
tribution to nonleptonic kaon decays. On a qualitative
level, they found that the inclusion of the instanton effects
indeed produces a strong enhancement of the �I � 1=2
decay channel. On a quantitative level, such an enhance-
ment was found to be still insufficient to reproduce the
experimental data. However, it should be mentioned that
nonleptonic kaon decays in the �I � 1=2 channel receive
a large contribution also from final-state interactions,
which have not been included in the KV analysis.
Moreover, it is now clear that the KVcalculation is under-
shooting the instanton contribution.1

In [19] the instanton-induced corrections to the effec-
tive Hamiltonian for �S � 1 transitions were analyzed
in the framework of the operator product expansion
(OPE). They found that such ‘‘hard’’ instanton effects
1The KV calculation was performed in the single-instanton
approximation. In such an approach, one treats explicitly the
degrees of freedom of the closest instanton and introduces an
additional parameter m
, which effectively encodes contribu-
tions from all other instantons. In their calculation, the authors
adopted the phenomenological estimate for m
 which was
available at the time, m
 ’ 260 MeV. Later, the same parame-
ter was rigorously defined, and determined from numerical
simulations in the ILM [20]. It was found to be considerably
smaller (m
 ’ 80 MeV).
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are rather small. This result is not surprising: The instan-
ton field cannot transfer momenta much larger than its
inverse size 1= ��� 0:6 GeV, so instanton effects above
such a scale are exponentially suppressed. For this reason,
in order to draw conclusions about the role played by the
’t Hooft interaction in weak decays, one necessarily
needs to include their contribution to the ‘‘soft’’ hadronic
matrix elements. In view of these arguments, in the
present analysis we shall neglect all instanton corrections
above the hadronic scale set by the inverse instanton size
	 � 1= �� and compute their contributions to low-energy
matrix elements.

The paper is organized as follows. In Sec. II we analyze
the structure of the effective Hamiltonian for �S � 1
transitions and explain in detail why instantons are ex-
pected to produce strong enhancement of the matrix
elements associated to �I � 1=2 transitions. In Sec. III
we review the framework which allows one to connect
parity-conserving and parity-violating decay amplitudes
to low-energy matrix elements of local operators. The
calculation of the decay amplitudes in the ILM is pre-
sented in Sec. IV. In Sec. V we discuss our results and
address the question of how to check our model assump-
tion of instanton domination for the light hadron dynam-
ics. We shall propose a systematic procedure to determine
on the lattice if the strong quark-quark attractive interac-
tion in the antitriplet 0� channel (which drives the �I �
1=2 rule) is predominantly due to quasiclassical gauge
configurations or is instead generated by other nonquasi-
classical fields, associated to quark confinement. All re-
sults and conclusions are summarized in Sec. VI.
II. �S � 1 EFFECTIVE HAMILTONIAN AND
THE ORIGIN OF THE �I � 1

2 RULE

To lowest order in the Weinberg-Glashow-Salam
Lagrangian, nonleptonic weak decays are driven by a
single W-boson exchange. However, such processes re-
ceive also QCD and QED corrections. These contribu-
tions are usually included in the framework of OPE, in
which one separates short-distance hard dynamics from
large-distance soft dynamics. The former interactions can
be treated perturbatively and give rise to the well-known
effective weak Hamiltonian, which for �S � 1 transi-
tions reads [21]
H�S�1
eff �

GF���
2

p VudVus

� X
i��;3;5;6

ci�		Qi � H:c:
�
: (1)
GF is the Fermi constant, Vud and Vus are quark mixing
matrix elements, Qi are local four-quark operators, and
ci�		 are the corresponding Wilson coefficients (	 is the
hadronic scale). The local operators Qi can be written as
-2
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Q� �
1

2
�� �us	V�A� �du	V�A � � �ds	V�A� �uu	V�A�;

Q3;5 � � �ds	V�A
X

q�u;d;s

� �qq	V
A;

Q6 � �2
X

q�u;d;s

� �qs	S�P� �dq	S�P;

(2)

where we have adopted the notations � �qq	V�A � �q�	�1�
�5	q and � �qq	S�P � �q�1� �5	q.

For a typical hadronic scale,	 ’ 1 GeV, the numerical
values of the Wilson coefficients are c� � 0:72, c� �
1:97, c3 � �0:005, c5 � 0:003, and c6 � �0:008.2

From these numbers it follows that nonleptonic weak
decays are driven by the terms proportional to the opera-
tors Q� and Q�, while all other terms can be neglected.

It is straightforward to verify that the operator Q�

triggers decays with �I � 1=2, while the operator Q�

induces transitions both in the �I � 1=2 and in the �I �
3=2 channel. Hence, in order to explain the �I � 1=2
rule, one needs to understand the dynamical mechanism
which enhances the contribution of the term proportional
to Q�.

Accounting only for weak interactions, one finds c� �
c� � 1 and c3 � c5 � c6 � 0. Clearly, perturbative
strong forces do indeed provide a relatively small en-
hancement of �I � 1=2 transitions. On the other hand,
a factor of 10 is still missing in order to reproduce the
experimental data. This must necessarily come from the
nonperturbative sector of QCD. In the OPE formalism,
large-distance strong dynamics enters through the low-
energy matrix elements of the effective Hamiltonian (1).
Hence, we conclude that nonleptonic weak decays are
driven by nonperturbative forces which enhance by
roughly 1 order of magnitude the hadronic matrix ele-
ments of Q�, relative to the matrix elements of Q�.

Significant progress in trying to understand these non-
perturbative effects has been made in a series of works by
Stech, Neubert, Xu, and Dosch (SNXD) [17,23–26].
Their starting point was the observation that the effective
Hamiltonian could be Fierz transformed into

Heff �
GF���
2

p VudVusfc��		�ud	
y
3
 �su	3
 � c��		�ud	

y
6 �su	6

�� � � � H:c:g; (3)

where �su	3
 � eikjs
T
i C�1 � �5	uj is a scalar and pseudo-

scalar color antitriplet diquark current, while �su	6 is the
corresponding color sextet current (the other currents are
given by similar expressions). From (3) it follows imme-
diately that the matrix elements proportional to c��		
will be greatly enhanced if the nonperturbative quark-
quark interaction is very attractive in the color antitriplet
channel. This is most evident in hyperons: If the non-
perturbative forces are so strong to allow, say, a s and u
2For an explicit expression of the Wilson coefficients see [22].
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valence quarks in a ��, to form a 0� antitriplet quasi-
bound state, then these quarks will have a much larger
chance to be caught in the same point and annihilated by
the local �su	3
 operator in the effective Hamiltonian. A
similar argument can be formulated also in the case of
kaon decays.3 Based on this simple dynamical assump-
tion, SNXD proposed a phenomenological model which
simultaneously explains kaon and hyperon nonleptonic
decays.

In order to justify the phenomenological assumptions
of the SNXD model and make contact with QCD, we
need to identify some nonperturbative gauge configura-
tions which, on the one hand, play an important role in
the hadron internal dynamics and, on the other hand,
generate color antitriplet quasibound diquarks.
Instantons have precisely this property. In [13] it was
shown that the ’t Hooft interaction does indeed form a
bound antitriplet scalar diquark of mass of roughly
400 MeV. It is therefore natural to ask whether these fields
can provide the microscopic mechanism underlying the
�I � 1=2 rule.
III. LOW-ENERGY MATRIX ELEMENTS

Nonleptonic hyperon decays can be parametrized in
terms of two constants corresponding to parity-violating
and parity-conserving transitions:

hB0�jHeffjBi � i �uB0 �A� B�5�uB; (4)

where B (B0) denotes the initial (final) baryon, and A and
B are, respectively, called S-wave and P-wave ampli-
tudes. The calculation of these amplitudes is generally
performed by analyzing separately two different contri-
butions which correspond to different mechanisms
through which the pion in the final state in (4) can be
produced.

In the so-called ‘‘factorization’’ part of the amplitude
[27], the final meson is excited directly by the color
singlet axial-vector current present in the effective
Hamiltonian (as pictured in Fig. 1). The corresponding
parity-conserving and parity-violating amplitudes for
nonleptonic hyperon decays with �� in the final-state
are [17]

A�
��fact	

ji �

�
c1�		 � 2c6�		

vv0

m2
K

�
F��Mi �Mj	F4�i5

j;i ;

B�
��fact	

ji � �

�
c1�		 � 2c6�		

v2

m2
K

�
F��Mi �Mj	G

4�i5
j;i

�

�
1�

m2
�

m2
K �m2

�

�
; (5)

with
3In this case the diquark is formed out of a valence and a sea
quark.
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FIG. 1 (color online). Factorization contribution to the non-
leptonic hyperon decay h�B0jHeffjBi.
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v �
m2
�

mu �md
�

m2
K

ms �mu
; v0 �

m2
K

ms �mu
;

F� � 132 MeV:
(6)

Decay amplitudes with �0 in the final state are obtained
from the substitution

A�
0�fact	

ji � �
1���
2

p Afact
�� �c1 ! �c2; F4�i5 ! F6�i7	;

B�
0�fact	

ji � �
1���
2

p Bfact
�� �c1 ! �c2; F4�i5 ! F6�i7	:

(7)

In (5) the i and j indices select the baryons in the initial
and the final state, and the constants Fji and Gji are the
axial-vector and vector form factors at zero momentum
transfer, defined as

hBj�1=2
�	jJa	jBi�1=2

�	ik	!0 � Fa
jiu�j	�	u�i	;

hBj�1=2
�	jJa5	jBi�1=2

�	ik	!0 � Ga
jiu�j	�	�5u�i	:

(8)

Assuming SUf�3	 flavor symmetry and using the
Goldberger-Treiman relation we have

gaji �
���
2

p
�ifjaiF� djaiD	g

with gaji �

���
2

p

F�
Ga
ji�Mj �Mi	; Fa

ji � ifjai:
(9)

Notice that, in the flavor symmetric limit, the factoriza-
tion part of the amplitudes is completely determined in
terms of experimentally measured low-energy constants.
In this work, we use the values [24]

g � 13:5; F�D � 1;
D
F

’ 1:8; (10)

where the D=F ratio is extracted from semileptonic de-
cays [28].

It is immediate to verify that factorization amplitudes
alone cannot explain the nonleptonic low-energy decays
of kaons and hyperons.4
4On the other hand, factorization gives the dominant con-
tribution in energetic B and D nonleptonic decays [27].
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The leading contribution to such reactions emerges
from a soft-pion analysis of the matrix element (4). By
applying the PCAC relation, the pion in the final state is
replaced by an additional operator, expressing the diver-
gence of the axial-vector current:

hBj�a�q	jHeff�0	jBii � lim
q2!m2

�

i

���
2

p
��q2 �m2

�	

F�m2
�

�
Z
d4x eiqxhBjjT�@

	Ja5	�x	

�Heff�0	�jBii: (11)

One then applies the well-known identity

i
Z
d4x T�@	Ja5	�x	Heff�0	�eiqx

� q	
Z
d4x T�Ja5	�x	Heff�0	� � i�Ia5 ; Heff� (12)

(Ia5 is the axial-charge operator) and performs the ana-
lytic continuation to q	 ! 0 (soft-pion hypothesis).

The first term on the right-hand side of (12) leads to the
so-called ‘‘pole contribution.’’ Physically, it corresponds
to the processes in which the effective Hamiltonian
mixes the initial or final baryon with some intermediate
virtual state (see Fig. 2). The final results for the pole
contributions read

B�pole	
ji �

���
2

p
�Mj �Mi	

F�

� Gjlh
�
li

�Mi �Ml	
�

h�jlGli

�Mj �Ml	

�
A�pole	
ji

� �

���
2

p

F�
�Ejlh�li � h�jlEli�; (13)

where M
 denotes the masses of the intermediate
Bl�1=2

�	 baryon which is mixed with the 1=2� baryon
by the effective Hamiltonian. The low-energy constants
FIG. 2 (color online). Pole contributions to the nonleptonic
hyperon decay h�B0jHeff jBi.
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h���	
ji and Eaji are defined as

hBj�1=2�	jH
pc
effjBi�1=2

�	i � h�jiu�j	u�i	;

hBj�1=2
�	jHpv

eff jBi�1=2
�	i � h�jiu�j	u�i	;

hBj�1=2
�	jJa5	jBi�1=2

�	ik	!0 � Eajiu�j	�	u�i	: (14)

Hpc
eff is the parity-conserving part of the effective

Hamiltonian, and reads

Hpc
eff �

~A�.ijk� �diC �uj	.lmk�dlC �um	

� .ijk� �diC�5 �uj	.lmk�dlC�5 �um	�; (15)

where

~A �
GF���
2

p sin/c cos/cc��		: (16)

Hpv
eff is the parity-violating part of the effective

Hamiltonian and reads

Hpv
eff � � ~A�.ijk� �diC �uj	.lmk�dlC�5 �um	

� .ijk� �diC�5 �uj	.lmk�dlC �um	�: (17)

Using SUf�3	 symmetry, one can express these matrix
elements in terms of few coefficients:

h�ji � 2
���
2

p
�ifj6if� � dj6id�	; h�j0 � e0j6;

Eaji � 2
���
2

p
�ifjaiF� � djaiD�	; Ea0i � E0ia:

(18)

In addition to the pole part, the S-wave amplitudes
receive also a contribution coming from the commutator
in (12).5 This is usually referred to as the ‘‘soft-pion’’
term:

Aa�soft	ji �
�

���
2

p

F�
hBjj�I

a
5 ; Heff�jBii: (19)

Unlike the factorization part, the pole and soft-pion
terms involve matrix elements which are not directly
related to experiments and have to be estimated theoreti-
cally. In the next section we present our calculation of
these matrix elements in the ILM.

IV. ILM CALCULATION

In this section we present our calculation of the P-wave
and S-wave amplitudes, within the ILM.

A. P-wave amplitudes

In order to determine the P-wave amplitudes in the
ILM model, we need to evaluate the nonperturbative
inputs h�ji , defined in (14).

In a field-theoretic framework, these matrix elements
can be extracted from appropriate ratios of Euclidean
5In P-wave amplitudes such a contribution vanishes because
the commutator selects only the parity-violating part of the
effective Hamiltonian.
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three- and two-point functions. Let us consider the
three-point correlator:

GB0B
3 �1	 �

Z
d3x

Z
d3y

�h0jT�J2B0 �x; 21	H eff�y; 1	 �J2B�0; 0	�j0i; (20)

where 1 � it, 2 is a spinor index, and J2B�x	, J
2
B0 �x	

are interpolating operators which excite states
with the quantum numbers of the B and B0 baryons.
[For example, for the proton and �� hyperon, we
used J2P�x	 � .abc�uTa �x	C�5db�x	�u2c �x	 and
J2
���x	 � .abc�sTa �x	C�5ub�x	�u2c �x	.]

It is straightforward to show that, in the limit of large
Euclidean time separation, the correlator (20) relates
directly to the matrix element h�B0B:

lim
1!1

GB0B
3 �1	 � 2h�B0B"

0
B"Be��MB0�MB	1; (21)

where "B0 and "B are the couplings of the interpolating
fields JB0 and JB0 to the B0 and B states, defined as

h0jJB�x	jBi � "BuB�p	e
ip�x: (22)

In the SUf�3	 symmetric limit we are considering, we
have "B0 � "B � " and MB0 � MB � M. Hence, in this
approximation, it is possible to extract the matrix element
h�B0B by taking the ratio of the three-point function (20)
with, say, the proton two-point function:

h�B0B � lim
1!1

GB0B
3 �1	

G2�21	
; (23)

where

G2�1	 �
Z
d3xh0jT�J2P�x; 1	 �J

2
P�0; 0	�j0i !

1!1
2"2e�M1:

(24)

Nonperturbative calculations of QCD correlation func-
tions can be performed by exploiting the analogy between
the Euclidean generating functional and the partition
function of a statistical ensemble. In lattice QCD, one
usually carries out analytically the integral over the
fermionic fields, and then computes numerically Monte
Carlo averages of the resulting Wick contractions over a
statistical ensemble of gauge configurations. In the ILM,
we replace the space of all gauge configurations with an
ensemble of instantons and anti-instantons [5]. As in
lattice QCD, in each configuration the quark propagator
is obtained by inverting the Dirac operator. Unlike lattice
QCD, in the ILM there is no need of regularization, so all
calculations are performed in the continuum. This pre-
scription is equivalent to computing the correlation func-
tions to all orders in the ’t Hooft interaction.

In this work we have considered the simplest version of
the model, the random instanton liquid (RILM), in which
the density and size of the pseudoparticles are kept fixed,
-5



TABLE I. Theoretical prediction and experimental results for P-wave amplitudes. Following
the standard notation, BQq corresponds to Amp�BQ ! B0 � �q	. The RILM prediction is
obtained by adding the pole and factorization contribution. Wilson coefficients have been
evaluated at the hadronic scale 	 � 1= �� � 0:6 GeV, using "MS � 230 MeV.

Pole Factorization RILM Experiment RILM
Exp:

"0
0 �6:87 �4:03 �10:9� 1:17 �15:61� 1:4 0:7

"0
� 9:72 8 17:71� 1:66 22:40� 0:54 0:8

��
0 20:82 1:65 22:4 � 3:55 26:74� 1:32 0:8

P-wave amplitudes ( � 107) ��
� 31:84 0 31:84� 4:81 41:83� 0:17 0:8

��
� 1:75 �3:26 �1:52� 0:30 �1:44� 0:17 1:1

#�
� 16:15 �2 14:15� 2:75 17:45� 0:58 0:8

#0
0 �11:42 1:01 �10:42� 1:95 �12:13� 0:71 0:9
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while their position in a periodic box and their color
orientation are generated according to a random
distribution.

We have evaluated numerically [29] the correlation
functions associated to the matrix elements hpjHeff j�

�i
and h"jHeff j#

0i. We have averaged over 52 configurations
of 252 pseudoparticles of size � � 0:33 fm, in a periodic
box of volume �3:63 � 5:4	 fm4. As in lattice simulations,
we have chosen a rather large current quark mass for u
and d quarks (75 MeV), to avoid finite-volume artifacts.
In order to check for the dependence of our results on the
quark masses, we have also performed the same calcu-
lation using larger quark masses (135 MeV). Finally, to
enforce flavor symmetry, we have set ms � mu � md.
The six-dimensional spatial integration in (20) has been
performed by means of an adaptive Monte Carlo method
(VEGAS). Convergence has been achieved using 1600 in-
tegration points. The three-dimensional integral in (24)
has been performed by first carrying out the angular
integration analytically (exploiting rotational symmetry)
and then computing the remaining one-dimensional ra-
dial integration by a Gauss-quadrature method.

We have observed that the quark-model relation
f�=d� ’ 1 holds also in our field-theoretic approach,6

with d� � �0:28� 0:05	 � 10�7 GeV, a result quite close
to the prediction of the SNXD model (d� � 0:35 �
10�7 GeV [24]). This calculation shows explicitly that
gluon and sea degrees of freedom contribute very little
to these decay amplitudes.

The results presented thus far correspond to simula-
tions performed with quark masses of 75 MeV. We have
found that calculations with heavier quark masses
(135 MeV) lead to very similar results (d� � 0:27 �
0:04� 10�7 GeV). We can therefore conclude that the
dependence of these amplitudes on the quark mass is
very weak.
6We remark that, in a field-theoretic framework, the relation
f�=d� ’ �1 is nontrivial. It is a consequence of the fact that
the sea contribution from fermionically disconnected graphs is
negligible.
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It is important to ask whether diquark quasibound
states survive within 1=2� baryons, or if they are melted
by the interaction with the third quark. To answer, we
have compared matrix elements obtained from the scalar
and from the pseudoscalar part of the diquark operator in
(3). We have found that such matrix elements are indeed
dominated by the scalar operators in the effective
Hamiltonian. This is a nontrivial result which represents
clean signature of the existence of scalar diquark struc-
tures in the hyperons, in the ILM. On the other hand, it
also implies that pseudoscalar diquarks are not present in
such baryons. Finally, since final-state interaction effects
are presumably small in this channel [24], we have ne-
glected them.

Our results for the P-wave amplitudes, obtained by
collecting the factorization and the pole contributions,
are reported in Table I and compared to experimental
data. First of all, we observe that the RILM can reproduce
the overall body of data on P-wave hyperon decays. All
theoretical amplitudes lie within approximately 20%
from the experimental results. Note that this discrepancy
is of the order of the systematic error introduced by the
assumption of SUf�3	 symmetry. However, taking a
closer look, we notice that the central values of the
theoretical predictions consistently undershoot the ex-
perimental results (except in one case to be discussed
below). This is hardly surprising, because in the present
calculation we have neglected all confining interactions.

Finally, we observe that the theoretical prediction for
the amplitude ��

� is the only one overshooting the ex-
perimental data. This is probably a reflection of the fact
that this is a very delicate channel, where the factoriza-
tion and pole terms are of the same order of magnitude
and have opposite sign.

B. S-wave amplitudes

S-wave amplitudes, receive contributions from both
the pole and the soft-pion part of the PCAC amplitudes.

The pole part involves mixing of 1=2� baryons with
1=2� virtual intermediate states (14). In the simple
quark-diquark model discussed in [17], 0� diquarks in
-6



TABLE II. Theoretical prediction and experimental results for S-wave amplitudes.
Following the standard notation, AQq corresponds to Amp�BQ ! B0 � �q	. The RILM pre-
diction is obtained by adding the soft-pion and factorization contributions. The results in
RILM(FSI) include also final-state interaction corrections, as estimated in [24]. Wilson
coefficients have been evaluated at the hadronic scale 	 � 1= �� � 0:6 GeV, using "MS �

230 MeV.

Soft Factorization RILM RILM(FSI) Experiment RILM
Exp:

"0
0 �1:71 0:2 �1:51 �1:75� 0:34 �2:36� 0:03 0:7

"0
� 2:41 �0:53 1:88 2:25� 0:57 3:25� 0:02 0:7

S-wave amplitudes ( � 107) ��
0 �4:18 0:23 �3:96 �3:55� 0:64 �3:25� 0:02 1:1

��
� 0 0 0 0 0:14� 0:03 � � �

��
� 5:91 �0:62 5:29 4:34� 0:9 4:27� 0:01 1

#�
� �4:83 0:61 �4:22 �4:22� 0:82 �4:49� 0:02 0:9

#0
0 3:41 �0:22 3:20 3:20� 0:58 3:43� 0:06 0:9

7For example, also a model built on the extension of the one-
gluon-exchange interaction into the nonperturbative regime
will do the job, at least on a qualitative level. For a recent
quark-model calculation, based on a nonrelativistic spin-
dependent potential, see [30].
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octet 1=2� baryons were introduced to obtain nonvanish-
ing h�ij matrix elements. On the other hand, the ’t Hooft
interaction is repulsive in the 0� channel. While the
attraction in the 0� channel triggers the formation of
scalar diquarks in 1=2� hyperons contributing to
P-wave amplitudes, the repulsion in the 0� channel pre-
vents the formation of pseudoscalar diquarks, which
would show up in 1=2� hyperons. Hence, in the ILM,
the pole contribution to S-wave amplitudes is expected to
be suppressed and we shall neglect it.

On the other hand, we compute explicitly the soft-pion
term (19), which arises from the commutator in (12). For
the sake of definiteness, let us consider the hP�0jHeff j�

�i
S-wave transition. The relevant part of the Q� operator in
the effective Hamiltonian can be written in a simplified
notation as

�du	y
0�
�us	0� � �du	y0��us	0� � H:c: (25)

The soft-pion contribution depends on the commutator of
the effective Hamiltonian with the axial-charge operator.
Using current-algebra relationships, it is possible to show
that the commutator of (25) with Ia5 gives the same result
as the commutator of the operator:

�du	y
0�
�us	0� � �du	y0��us	0� � H:c:; (26)

with the Ia operator. Because of the repulsion of the ’t
Hooft interaction in the 0� diquark channel, the instanton
contribution to the matrix elements of the second term in
(26) between 1=2� states is negligible. On the other hand,
the matrix elements of the first term in (26) relate to the
f� and d� constants, which have been calculated to
determine the P-wave amplitudes.

Final-state interaction corrections in this channel are
rather small but not negligible. We have included them
following the estimate performed in [23].

The RILM predictions for S-wave decay amplitudes
are presented in Table II and compared to experimental
results. As in the case of P-wave transitions, we observe a
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good agreement with experiment, with prediction within
20% from the data. Again, we observe that the ILM tends
to undershoot the measured amplitudes, which confirms
the idea that roughly 20% of the attraction in the 0�

antitriplet channel comes from confining interactions.
Note that having neglected pole terms leads to very
reasonable results (except in one channel, ��

�, where
also all other contributions vanish). Clearly, there is no
need to assume pseudoscalar diquark structures in 1=2�

baryons.
V. DISCUSSION

In the previous section we have shown that the inclu-
sion of instanton-induced effects allows one to reproduce
the overall body of data on nonleptonic hyperon decays.
We recall that both P-wave and S-wave results have been
obtained by considering only the contribution of the
operator Q� in the effective Hamiltonian, which drives
only transitions with violation of isospin 1=2. Hence, we
conclude that the ’t Hooft interaction does provide a
nonperturbative dynamical explanation of the �I � 1=2
rule.

An important question to ask is whether one can rule
out alternative dynamical mechanisms, which are not
based on quasiclassical interactions. As already stressed,
the essential dynamical property which is required in
order to produce an enhancement of �I � 1=2 transitions
is an attraction in the scalar antitriplet 0� channel.
Clearly, any model for the microscopic dynamics which
exhibits a sufficiently strong attraction in this channel
will produce scalar diquarks.7 It is nevertheless very
important to clarify the dynamical origin of these struc-
tures, whose existence seems to be confirmed by a number
-7
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FIG. 3 (color online). Two different hypothetical scenarios
for the behavior of lattice QCD decay amplitudes under cool-
ing. On the x axis, 5=50 represents the values for string tension
obtained after different numbers of cooling steps, normalized
to the QCD string tension (no cooling). On the y axis, A=A0

represents the ratio of a decay amplitude computed after the
same number of cooling steps, normalized to its value in QCD
(no cooling). In scenario 1, the decays are driven by quasi-
classical interactions and the amplitudes change by roughly
20% under cooling (ILM prediction). In scenario 2, the decays
are driven by the confining forces and vanish rapidly under
cooling.
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of independent phenomenological studies (for example,
in connection with exotic spectroscopy, see [31,32]).

In the following we suggest a systematic, model-
independent procedure to answer the question whether
quasiclassical topological fields do indeed provide the
dominant nonperturbative interactions driving diquark
formation and the �I � 1=2 rule. The idea is to evaluate
the relevant matrix elements on the lattice and to compare
the behavior under cooling of the decay amplitudes and of
the string tension.

The cooling algorithm consists of performing statisti-
cal averages on different ensembles of gauge configura-
tions which are closer and closer to the extreme of the
Euclidean action. This way, the contribution of quasiclass-
ical fields is progressively isolated. It is well known that,
after few cooling steps, all perturbative fluctuations as
well as the confining interactions are removed from the
QCD vacuum. On the other hand, the essential properties
of light hadrons, such as their masses and point-to-point
correlators, are seen to change very little. This implies
that light hadrons are predominantly bound by quasiclass-
ical nonconfining gauge configurations [6].

The main shortcoming of the cooling procedure is that
it leads to results which intrinsically depend on the arbi-
trary number of cooling steps. Because of this problem, it
is very difficult to make systematic, quantitative state-
ments. On the other hand, the qualitative observation that
light hadrons still exist in the absence of confinement and
that smooth, topological structures survive even when the
string tension is drastically suppressed are model-
independent facts, in QCD.

We recall that instantons are smooth, topological qua-
siclassical configurations which bind hadrons but do not
confine. This observation suggests to study the behavior of
the �I � 1=2 decay amplitudes as a function of the string
tension, calculated after each cooling step (see Fig. 3). On
the basis of our analysis we predict that, if instantons are
indeed the leading dynamical effect, then the amplitudes
should decrease by at most 20%, as the string tension
varies from its physical value to nearly zero. On the other
hand, if instantons do not provide the dominant interac-
tion in these processes, then the amplitudes should dras-
tically die out, along with the string tension.
VI. CONCLUSIONS AND OUTLOOK

In this work, we have studied the instanton contribu-
tion to nonleptonic weak decays of hyperons. We have
applied the OPE formalism to separate hard-gluon cor-
rections to soft nonperturbative effects and we have used
the random instanton liquid model to compute the rele-
vant low-energy matrix elements. The connection be-
tween the matrix elements and the decay amplitudes has
been established considering the contributions arising
from both the pole and soft-pion terms in the PCAC
relations and from the factorization part of the amplitude.
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Final-state interaction corrections have been applied to
S-wave transitions, and have been neglected in P-wave
transitions.

We have found that the ILM yields to a good description
of both P-wave and S-wave decays, providing a micro-
scopic explanation for the �I � 1=2 rule. In this model,
the strong enhancement of the transitions in which the
total isospin is changed by 1=2 units is originated by the
strong attraction due to the ’t Hooft interaction in the
quark-quark scalar antitriplet channel, leading to a
quark-diquark structure in the hyperons. We stress that
the calculations presented in this work were performed
with no parameter fitting. The only phenomenological
quantities introduced by the ILM are the instanton aver-
age size and density, which had been fixed long ago to
reproduce global vacuum properties.

Our results provide a further confirmation of the gen-
erally accepted picture according to which the internal
dynamics of light hadrons is dominated by the interac-
tions responsible for chiral symmetry breaking. Indeed in
the present calculation, roughly 70% of the amplitudes
comes from instanton-induced interactions (which drive
the spontaneous breaking of chiral symmetry), 10% from
hard-gluon-exchange corrections, while the remaining
20% is due to some other interactions, presumably related
-8
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to confinement. Results are seen to depend very weakly
on the value of the current quark masses chosen.

Since the present analysis is affected by some model
dependence, we cannot in principle rule out possible
alternative dynamical mechanisms for scalar diquark
formation. However, we have suggested a lattice-based
procedure which would allow one to determine, in an
unambiguous and model-independent way, if the strong
attraction in the diquark channel is generated by quasi-
classical gauge configurations or if it is due to the quan-
054016
tum fluctuations associated with the dynamics of color
confinement.
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